The Power You Need

Presented by:
Doc Anderson - Director of Motive Power Training and Applications
Samer Elshafei - Vice President of Commercial and Industrial Sales
Agenda

• East Penn & Navitas Systems overview
• Battery technologies
• Battery performance
• The right battery for the right application
• Sustainability
• East Penn – Your energy storage solution provider
East Penn Overview
East Penn Today

• Largest single-site and largest privately-held battery company
• 3 U.S. Battery manufacturing locations
 • Lyon Station, PA - 520 Acres
 • Ann Arbor, MI
 • Corydon, IA
• Vertically integrated
• Quality culture
• Investment in our people
• Over 70 years in the industry
• Single source technology solutions

10,000+ Employees Globally
DEKA North American Dealer/Support Network

Our strength is in the Deka Network's ability to provide the technologies, products, & support to optimize customers’ operations.
Navitas Systems Overview

- Family owned company founded in 2012 with two generations in place.
- Headquarters: Woodbridge, IL
- R & D/Government Work: Ann Arbor, MI
 - 48,000 sq. ft.
 - 60 scientists & engineers
 - 100+ employees
- Battery manufacturing: Ann Arbor, MI
 - 100,000 sq. ft.
 - 50+ employees
- East Penn acquired majority share in 2019
Battery Technologies
Lead Battery Chemistry

- Two unlike metals in acidic solution
 - Positive plate = PbO$_2$ – lead dioxide
 - Negative plate = Pb - lead
 - Electrolyte = H$_2$SO$_4$/H$_2$O – dilute sulfuric acid
Lead Battery Chemistry

• Technology types
 • Flooded – Electrolyte that is liquid based.
 • Absorbed Glass Mat - A glass microfiber separator absorbs and retains the electrolyte in direct contact with the plate.
 • Gel - Electrolyte which has been immobilized by addition of silica powder or other gelling agent.
Li-ion Cell Chemistry

Cathode(+)

- **LFP**
 Iron Phosphate
 Increasing Energy

- **LMO**
 Manganese Spinel

- **NCM**
 Ni/Co/Mn

- **NCA**
 Ni-Co-Al

Increasing Safety

LFP Has the Greatest Life in Motive Power Applications
Battery Performance
Understanding Lead & Lithium Batteries
Performance Characteristics of Lead Batteries

1000 AH capacity, 36 Volt Example

- We can use 80% or 800 AH over six hours
- For heavy and/or high lifting the truck consumes more amps
- Lead batteries are impacted by the rate of discharge
 - Think of a mix of drive and lifting
 - Think “put away” or, “elevator” operations

Key Point:
The greater the amps consumed, the fewer available AH
Performance Characteristics of Lead Batteries

1000 AH capacity, 36 Volt Example

- Conventional batteries are rated at 1 EBU per day
- Opportunity charge batteries are rated at 1.25 EBUs per day
- Fast charge batteries are rated at 1.6 EBUs per day

Key Point:
Equivalent Battery Unit (EBU) is defined as one discharge to 80% depth of discharge
1000 AH Lead Battery Dynamic Discharge
Performance Characteristics of Lithium Batteries

• Lithium batteries are not influenced by the rate of discharge
 • If a battery is rated at 700 AH the battery can be:
 • Discharged at 560 amps for one (1) hour
 • Discharged at 280 amps for two (2) hours
 • And so on…

Key Point:
The lithium battery will deliver full useable AH
1000 AH capacity, 36 Volt Example

• Our lithium equivalent battery will be measured in AH throughput
 • The battery is rated at 700 AH
 • We can use 80% or 560 AH
 • Regarding AH throughput…
 • The key focus with lithium is kWh throughput
 • As a result of higher discharge voltages, less Amps are required, and less AH
 • The kWh throughput is about 65,000 kWh
 • This is about 55% more lifetime kWh than the PSOC lead battery
Lithium Battery Dynamic Discharge
How Does the Truck React to a Battery?

• During discharge, the lithium battery voltage does not decrease as much as lead.
The Right Battery for the Right Application
Finding the Right Power Solution

• Understand your operations, costs, duty cycles, and goals
 • Site survey
 • Power study

• Deliverables
 • Performance modeling
 • Maintenance modeling
 • Financial modeling
 • Life modeling
Application Analysis

• Factor in each aspect of the process:
 • Acquisition and installation
 • Productivity
 • Charging
 • Changing
 • Maintenance
 • End of life
 • Duty cycle
 • Temperatures

• Power Study
 • Temperature of operations
 • Discharge & recharge
 • Duty cycle
 • AH throughput & rate of discharge
 • Time to recharge and equalize
 • Cables & connector(s) – single or double
 • Life
 • Ampere Hour (AH) throughput, years of service
 • Depreciation schedules
Understanding the Big Picture

• Needs are many and varied
 • One or two shifts
 • Cold storage
 • Three shifts

• There’s no single technology that serves all applications
 • The goal is to identifying all the business case dimensions and apply the right solution(s)
Determining the Best Solution

• Both lead and lithium batteries have applications, performance, life, and maintenance differences
 • Lead Batteries
 • Low cost
 • Wide ranging applications
 • Proven technologies
 • Conventional or Partial State of Charge
 • Affordable to very low maintenance
 • Efficient recycling streams
 • Lithium Batteries
 • Higher initial acquisition cost
 • Partial state of charge
 • Higher discharge voltages
 • Very low maintenance
 • Highly efficient recharge
Applications Targets and Summary

• Lead “shines” in
 • Initial cost
 • Conventional and PSOC charging applications
 • \(\leq 1.6 \) EBU’s per day
 • Multiple shifts
 • Flooded and maintenance free

• Lithium “shines” in:
 • Cold storage applications
 • High AH throughput
 • >1.6 EBU’s per day
 • Multiple shifts
 • Customers desiring zero watering
 • Customers desiring zero equalize charging
Financial Modeling

• Comparison of the total cost of ownership of both lead and lithium batteries
 • Acquisition
 • Operations
 • Maintenance
 • End of life

• Financial analysis
 • To determine the value of the financial investment of the technologies
 • Return on Investment (ROI) - Payback period
 • Internal Rate of Return (IRR) – What is the “Interest Rate” of the investment
 • Net Present Value (NPV) – Consolidation of the costs, savings, and value of the saving
 • Total Cost of Ownership (TCO) – Entire cost over the life of the project
TCO Comparison

Key factors:

- AH throughput
 - 1.2 lead EBU’s
- Shifts per week
 - 10 shifts
- Cost of electricity
 - $.06 kwh
- Fully loaded operator costs
 - $22.50 PH/PP
- Battery fleet size
 - 150 batteries
TCO Comparison

Key factors:
- AH throughput
 - >1.6 lead EBU’s
- Shifts per week
 - 18 shifts
- Cost of electricity
 - $.08 kwh
- Fully loaded operator costs
 - $70 PH/PP
- Battery fleet size
 - 226 batteries
Battery Solution Development – Lead & Lithium

• Compare and contrast both technologies:
 • Acquisition and installation
 • Cycle life
 • Charging
 • Changing
 • Maintenance
 • End of life

Key Point:
Make the data driven solution that is optimal for the customers’ needs
End of Life Solutions - Lead

LEAD BATTERIES ARE 99% RECYCLABLE

LEAD BATTERIES are the MOST RECYCLED PRODUCT in the United States

1 National Recycling Rate Study, Battery Council International, 2017
End of Life Solutions – Lithium

• Current lithium end of life solution:
 • Many elements can be reused/recycled
 • Counterweight tray - Steel
 • Battery pack case - Steel
 • Cables - Copper
 • Hardware - Steel

Key Point:
East Penn is committed to receiving all Deka Ready Power units back at the end of their life for proper disposal.
East Penn – Your Energy Storage Solution Provider
We are Specialists

• Lead and lithium battery specialists
• Focused on providing factual data for various power solutions
• Sales tools, solution proposal development, ease of ordering
• Focused on helping you reach your material handling goals
Product Attributes

• Lead
 • Rugged flat plate design
 • Proprietary oxide
 • 5-step retention system
 • Exclusive formation process
 • Quality system

• Lithium
 • Widest range of 24/36/48 volt products
 • Exclusive
 • BMS
 • BMS software
 • UL Listing
 • Lithium iron phosphate chemistry
 • Safety certified
 • UL drop test
 • Nail penetration
Summary

• Find a partner who is committed to:
 • Provide **reliable and powerful** solutions
 • Provide **financial solutions** for our customers to consider
 • Provide a **safe solution**
 • Provide an **end of life solution** for both Deka lead and lithium batteries
 • Provide the tools to **help customers** optimize their operations
For more information:

Doc Anderson – Director of Motive Power Training and Applications
Speaker email: danderson@dekabatteries.com
Website: www.dekabatteries.com

Samer Elshafei – Vice President of Commercial and Industrial Sales
Speaker #2 email: selshafei@navitassys.com
Website: www.navitassys.com

Visit MODEX Booth 6629