Warehouse Execution Systems and the “Smart” Distribution Center

Presented by:
Dinesh Dongre
Dan Gilmore
Presenters

Dinesh Dongre
VP Product Strategy
Softeon, Inc.

Dan Gilmore
CMO
Softeon, Inc.
What is a Warehouse Execution System?
“The WMS should have all the information it needs to make all the decisions. The WCS should just take that decision about where a carton goes, deliver it, and then tell us that it's there.”

Mark Fralick, GetUsROI
Some Implementations

Why?

- Lack of WMS Capabilities
- MHA Vendor in Control of Customer
- Agreements between WMS and WCS Vendor
New Dynamic in Some Scenarios

<table>
<thead>
<tr>
<th>WMS</th>
<th>WES</th>
<th>WCS</th>
</tr>
</thead>
</table>

Why?
- WES only Developed Due to Perceived Shortcomings in WMS
- Attributes
 - Visibility to Process/Work Area/MHA Status
 - Flow of Work Based on Capacities and Work Load
 - “Waveless” Processing/Leveling of Activity
Gartner’s View

<table>
<thead>
<tr>
<th>System</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse control system (WCS)</td>
<td>Middleware that sits between the WMS and the PLCs that control material handling automation devices. The WCS translates business-transactional information coming out of a WMS into real-time instructions for the automation. WCSs also help orchestrate product movements within automated warehouses.</td>
</tr>
<tr>
<td>Warehouse execution system (WES)</td>
<td>An emerging hybrid that blends capabilities from both a traditional WMS and a WCS. A WES builds on the WCS’s near-real-time insight into what’s happening in the automated warehouse, but it adds business process logic to this layer.</td>
</tr>
<tr>
<td>Warehouse management system (WMS)</td>
<td>The traditional business applications that handle business transactions, such as receiving goods, putting them away, and picking, packing and shipping orders. The focus of a WMS is on inventory and transactional integrity for people-managed processes. On top of process integrity, WMSs have been enhanced to support more and more capabilities that are intended to proactively drive process and productivity improvements.</td>
</tr>
</tbody>
</table>
Gartner’s View

<table>
<thead>
<tr>
<th>System</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse control system (WCS)</td>
<td>Middleware that sits between the WMS and the PLCs that control material handling automation devices. The WCS translates business-transactional information coming out of a WMS into real-time instructions for the automation. WCSs also help orchestrate product movements within automated warehouses.</td>
</tr>
<tr>
<td>Warehouse execution system (WES)</td>
<td>An emerging and a key combination of both a traditional WMS and a WCS. It offers real-time insight into what’s happening and provides business process logic to this layer.</td>
</tr>
<tr>
<td>Warehouse management system (WMS)</td>
<td>The traditional business applications that handle business transactions, such as receiving goods, putting them away, and picking, packing and shipping orders. The focus of a WMS is on inventory and transactional integrity for people-managed processes. On top of process integrity, WMSs have been enhanced to support more and more capabilities that are intended to proactively drive process and productivity improvements.</td>
</tr>
</tbody>
</table>

This is pretty good – except WES Is Not only for Heavily Automated DCs!
WES Characteristics

▪ Can be Integrated WMS of Same Vendor or with Any Existing Warehouse System.

▪ Should Work for Automated, non-Automated and Hybrid DCs.

▪ One System to Manage All Automation in the DC.

▪ Game-changing Breakthrough that Starts Delivery of the “Autonomous WMS”
Represents a Step-Chain in WMS Capabilities

• 20 Years of Only Incremental Improvement in WMS Capabilities

• Softeon Warehouse Management and Execution System Starts Down the Path of New WMS Model
A WMS Market Inflection Point

WMS + WES = WMS^x

Warehouse Management & Execution System
WES Addresses Common Distribution Problems/Opportunities

- Lack of Granular Visibility to Throughput and Order Execution
- Labor Planning Challenges
 - Right Resources not in Right Place at Right Time
- Time/Cost/Approach of Adding Technologies (e.g., Picking Sub-Systems)
- Sub-Optimal Picking Execution
- Difficulty Meeting Carrier Cut Off Times/Ensuring SLAs
- High Variability in Materials Handling Equipment Utilization
- WMS Still Highly Reliant on Human Decision-Making
Fundamental Value Proposition

WES Should:

▪ Enable Companies to Meet Customer Demand and Service Commitments at the Least Possible Cost

▪ Significantly Shrink the Gap Between Theoretic and Realized DC/System Throughput

▪ Provide Single System for Management and Control of Fulfillment Across the DC
How WES Delivers Results

- Real-Time Visibility to Throughput, Bottlenecks and Events
- Direct Management and Optimization of Picking Sub-Systems
- Advanced, Configurable Optimization for Order Batching, Release, Picking and Replenishment
- Workload Balancing to Maximize Equipment Utilization and Flow
- Automated Order Release Based on Service Commitment, Shipping Schedules and Real-Time Condition Monitoring
- Use of Simulation to Plan, Re-plan and Allocate Resources
WES Architecture

WES shares same framework with Sotefon WMS, RMS, and FMS

*subset of WMS, RMS, FMS components only

FMS – Forecast Management System
RMS – Resource Management System (Labor)
WMS – Warehouse Management System
Key WES Function Components

<table>
<thead>
<tr>
<th>Condition and Event Monitor</th>
<th>Simulation Engine</th>
<th>Shared WMS Component Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick Route Optimizer</td>
<td>Automated Order Release Engine</td>
<td>Advanced Scheduler</td>
</tr>
<tr>
<td>Order Batch Optimizer</td>
<td>Capacity Manager</td>
<td>Dynamic Work Queue Manager</td>
</tr>
</tbody>
</table>

Dynamic Rules Engine

MHE Integration
Real-time Visibility to Throughput and Bottlenecks
WES Real-Time Dashboards
Shared WMS Component Library
Examples of WMS + WES Capabilities

- Advanced Cartonization
- Optimized Order Planning and Release Based on Many Variables, Including Priority, Travel Path and Distance, Bath and Clustering Opportunities, Replenishment Status, and More
- Waveless, Wave-Based, or Hybrid Picking
- Configurable Order Pool Management
- Dynamic Slotting
- Direct Management and Control of Picking Subsystems Including Voice, Pick-to-Light, Smart Carts, Put Walls, Conveyors and Mobile Robots
- Dynamic Pick Cart and Put Wall Order Assembly
- Hot Order Insertion
- Packing Operations
- Parcel Shipping
- Print-and-Apply
- Distribution Center Resource Planning Based on Simulation of Actual and Forecast Order Volumes
- Real-Time Monitoring of Activity and Throughput by Individual Processing Area in the DC
- Analytics on Available Versus Required Resources (People and Equipment) by Processing Area
- Auto Assignment of Resources to Processing Areas
- Pull-based Order Release Based on Outbound Shipping Schedules, Service Commitment, and Carrier Cut Off Times
- Labor Management and Reporting
Direct Management and Control of Picking Systems
Each Sub-system with its Own Control Software

Voice Server
Order Release Logic

Pick Cart
Control System Order Release Logic

PTL
Control System Order Release Logic

Put Wall
Control System Order Release Logic

Robot
Control System Order Release Logic

Voice terminals
Smart carts
Pick-to-light
Put walls
Mobile robots
Each Sub-system with its Own Control Software

Issues:
- High Cost Hardware
- Cannot Optimize End-to-End Picking Processes
- Subsystems Operate in Silos
The Better Way

Real-Time API Integration

WMS

Real-Time API Integration

voice terminals

smart carts

pick-to-light

put walls

mobile robots
The Better Way

The Benefits:

▪ Better Decision Based on Complete Information
▪ Optimization Specific to Each Approach
▪ Improved Exception Handling

Real-Time API Integration

voice terminals
smart carts
pick-to-light
put walls
mobile robots

WMS
Pick Route Optimization
Dynamic, “Aware” Pick Release Management

Condition and Event Monitor
Advanced Scheduler

Sample criteria
- (Pick/Replen) Zone balancing
- Channel based priority
- Continuous Wave
- Carrier/Service Level based
- Capacity based (Resources)

Process Channels

ERP Ecommerce (Web) Customer Service

Orders

Dynamic Order Orchestration & Optimization

Pallet Pick Case Pick Each Pick PTL Odd Size Pick Cluster Pick Pick to Belt Case Replenishment Pallet Replenishment

Putwall

Shipping

Parcel

LTL

P&D

Packing/Pack Stations

Shipping

POWERED BY POSSIBILITIES.
Optimization of Order Batching (Example #1)

- Cartonization in picking sequence
- Cluster Building based on relative proximity between picking locations of containers
- **Parameter driven batching/cluster-building** based on
 - Cart size
 - Number of free carts
 - Wait times
 - Resource availability
- Strike the right balance between optimization of cart build and on-time task completion (Static Cart Vs Dynamic / Perpetual Cart)
- Intelligent Hot Order Insertion
Optimization of Order Batching (Example #2)

Incoming Order Streams

Dynamic Order Pool

Pick Carts

Pack Stations

Put Walls

Autobagger
Optimization of Order Batching (Example #2)

- Sophisticated Order Planning:
 - Picks not Good for Wall
 - Best Picks for Wall
 - Wall Constraints
 - Cluster/Batch Picking Opportunities
 - SKUs/Order
 - Inventory/Replen Status
 - Size of Product/Carton
 - SKU Bar Codes Yes/No
 - More….
Optimization of Order Batching (Example #2)

Incoming Order Streams

Dynamic Order Pool

- Advanced Features
 - Batch and Cluster Picking on Same Cart
 - Pick from Lights/Non-Light Areas Together
 - Dynamic and Virtual Wall Assignment
 - Multiple Operators per Wall
 - Wave Overlap on Wall
 - Hot Order Insertion into Best Cart
 - Complete Integration with Packing
 - Metered Carton Flow into Walls
 - More

Pack Stations

Put Walls

Autobagger

Pick Carts
New “Plug and Play” Approach to Adding Technology
Automated Order Release
Auto Order/Work Release

- **Dynamic Rules-based Auto Release of Order/Tasks**
 - Order Attributes (Priority, Ship Date, Customer, and such)
 - Resource Capacity and Standards
 - Labor & Resource Type (Case Pickers, etc.)
 - Equipment (Cart, Robots, etc.)
 - MHE (Put Wall, Conveyor, Sorter, Diverts, etc.)
 - Reprioritization
 - Workload Balancing needs
 - Real-time feedback (changes in priority and/or ship times, inventory, capacity)

- **Identifying best channels of work (Pallet Pick, Put Wall, Case Pick, etc.)**
 - For example - Ability to accumulate full case picks into pallet picks based on configurable amount of time for newer orders

- **Configurable Rules**
Auto Order Release – Rule Definition/Configuration

<table>
<thead>
<tr>
<th>Seq #</th>
<th>Rule ID</th>
<th>Description</th>
<th>Category</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ORDER_PRIORITY</td>
<td>Order Cut Off Time Update and Prioritization</td>
<td>ORDER</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FG_TASK_CREATOR</td>
<td>Builds Full Pallet and Case Pick for Vacuum SKUs</td>
<td>ORDER</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ORDER_HOLD_RELEASE</td>
<td>Order Hold Release</td>
<td>ORDER</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>REPL_PRIORITY_UPDATE</td>
<td>Replenishment repriority</td>
<td>ORDER</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>REPLACEMENT_CLEANUP</td>
<td>Replenishment Cleanup</td>
<td>ORDER</td>
<td></td>
</tr>
</tbody>
</table>

Detail

<table>
<thead>
<tr>
<th>Seq #</th>
<th>Description</th>
<th>Input Flag</th>
<th>Constraint</th>
<th>Output Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Order Ship Cut-Off Time Update (Based on Order Drop Time)</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>2</td>
<td>Order Priority Update</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>11</td>
<td>Order Prioritization - Previous Load Day, Today's Shipment</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Auto Order Release – Putwall Example

- **Representative Rules for Auto Release of Orders designated for a Put Wall**
 - Put Wall Pairing (One resource per wall or 2 back-to-back walls)
 - Ability to release batches for paired put-wall after 'x' % of Put Wall processing is complete
 - Just in time Cart Build (Creation of Pick task) based on Put Wall completion status
 - Prioritization of batches eligible for cart build based on status of put-wall completion.
 - Maintain balance of workload across Put Walls by feeding the right Put Walls
 - Put Wall level queue (number of totes) configuration
 - Ability to pick for multiple Put Walls in one cart / task
 - Ability to activate / deactivate Put Walls based on resource availability
 - Assign homogeneous orders (units/lines) to a single Put Wall to reduce overall time taken for put-wall release
 - “Elastic” Put Wall (Use a Put Wall of 100 slots to process more than 100 orders by dynamically allocating and releasing Put Wall slots)
 - Ability for priority orders to side-step regular queue and hit the Put Wall at the next possible opportunity
Optimizing Equipment Utilization

- Case Picking
- Piece Picking
- Replenishment
- Advanced Scheduler
- Metered Flow to Automation Systems
- Real-Time Visibility
- Put Wall
- Case Sorter
- Unit Sorter
Simulation-Based Resource Planning
Simulation-Based Resource Planning

How It Works

- Simulation Engine Combines Available Order Pool Forecasts for Additional Work Likely to be Received based on Order History/Patterns
- Understands Current Resource Plan/Allocation across Processing Areas (e.g., Pallet, Case, Piece Pick; Put Walls; Replenishment, etc.)
- WES Simulates Expected Work (Demand) against Current Resources Plan in a Time-Phased Manner
- Identifies by Time Block where there is Demand-Resource Imbalance
Demand vs. Capacity Dashboard from Simulation
Dynamic Capacity Management

SHIFT TIMINGS

08:00
10:00
11:00
12:00

Orders

Pallet Pick Case Pick Each Pick Cluster Pick Case Repl Pallet Repl Putwall

Demand : 1150
Capacity : 1200
of Tasks : 20
of Resources : 10
Est. Time : .96
Suggested Resources : 9
Resource Gap : 1

Demand : 2000
Capacity : 1200
of Tasks : 1
of Resources : 8
Est. Time : 1.67
Suggested Resources : 13
Resource Gap : -5
Case Studies

- Fast Growing Omnichannel Retailer
- Home Products Manufacturer
- Major Sports/Outdoor Apparel Brand
- Well-Known Home Appliance Maker
Benefits of Next-Generation WES

- Double Digit Improvement in Labor Productivity
- Significant Reduction in Supervisory Overhead
- Reduced/Better Managed Overtime
- Improved Throughput
 - Closing Gap between Theoretic and Actual Throughput of a Facility
- Easily and Quickly Evaluate and Deploy New Sub-Systems/Technologies
- Consistently Meet Service Commitment with Little “Chaos”
- Improve MHE Utilization
 - Additional Throughput or Reduce Required Capacity

Benefits Applicable to Automated, Manual and Hybrid DCs!
Where We Are Headed

- **Beginning of an Era of Autonomous Warehouse Software**
 - Automated Decision-Making
 - Self-tuning (in part through use of AI/ML)

- **Advanced Focus on Product and Process Flow**
 - Reduce/Eliminate Process Bottlenecks and Dwell Times
 - Flow Distribution™
For more information:

Speaker #1 email: DDongre@Softeon.com
website: www.Softeon.com

Speaker #2 email: DGilmore@Softeon.com
website: www.Softeon.com

Join us at our second presentation on what’s new in WMS for 2020 – 2 times available!

Tuesday @ 2:15pm and and Thursday @ 1pm in Theatre D

Visit us @ MODEX Booth #7466